Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.01.19.476998

RESUMEN

The continual emergence of SARS-CoV-2 variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant, has rendered ineffective a number of previously EUA approved SARS-CoV-2 neutralizing antibody therapies. Furthermore, even those approved antibodies with neutralizing activity against Omicron are reportedly ineffective against the subset of Omicron variants that contain a R346K substitution, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. Following a campaign of antibody discovery based on the vaccination of Harbour H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of Spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against the Omicron and Omicron + R346K variants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for use in human clinical trials.


Asunto(s)
Síndrome Respiratorio Agudo Grave , Pérdida de Peso , COVID-19
2.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.10.28.359836

RESUMEN

We have previously reported that the SARS-CoV-2 neutralizing antibody, STI-2020, potently inhibits cytopathic effects of infection by genetically diverse clinical SARS-CoV-2 pandemic isolates in vitro, and has demonstrated efficacy in a hamster model of COVID-19 when administered by the intravenous route immediately following infection. We now have extended our in vivo studies of STI-2020 to include disease treatment efficacy, profiling of biodistribution of STI-2020 in mice when antibody is delivered intranasally (IN) or intravenously (IV), as well as pharmacokinetics in mice following IN antibody administration. Importantly, SARS-CoV-2-infected hamsters were treated with STI-2020 using these routes, and treatment effects on severity and duration of COVID-19-like disease in this model were evaluated. In SARS-CoV-2 infected hamsters, treatment with STI-2020 12 hours post-infection using the IN route led to a decrease in severity of clinical disease signs and a more robust recovery during 9 days of infection as compared to animals treated with an isotype control antibody. Treatment via the IV route using the same dose and timing regimen resulted in a decrease in the average number of consecutive days that infected animals experienced weight loss, shortening the duration of disease and allowing recovery to begin more rapidly in STI-2020 treated animals. Following IN administration in mice, STI-2020 was detected within 10 minutes in both lung tissue and lung lavage. The half-life of STI-2020 in lung tissue is approximately 25 hours. We are currently investigating the minimum effective dose of IN-delivered STI-2020 in the hamster model as well as establishing the relative benefit of delivering neutralizing antibodies by both IV and IN routes.


Asunto(s)
COVID-19 , Pérdida de Peso , Síndrome Respiratorio Agudo Grave , Síndrome de Behçet
3.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.09.27.316174

RESUMEN

SARS-CoV-2 neutralizing antibodies represent an important component of the ongoing search for effective treatment of and protection against COVID-19. We report here on the use of a naive phage display antibody library to identify a panel of fully human SARS-CoV-2 neutralizing antibodies. Following functional profiling in vitro against an early pandemic isolate as well as a recently emerged isolate bearing the D614G Spike mutation, the clinical candidate antibody, STI-1499, and the affinity-engineered variant, STI-2020, were evaluated for in vivo efficacy in the Syrian golden hamster model of COVID-19. Both antibodies demonstrated potent protection against the pathogenic effects of the disease and a dose-dependent reduction of virus load in the lungs, reaching undetectable levels following a single dose of 500 micrograms of STI-2020. These data support continued development of these antibodies as therapeutics against COVID-19 and future use of this approach to address novel emerging pandemic disease threats.


Asunto(s)
COVID-19 , Urgencias Médicas
4.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.06.29.178616

RESUMEN

Vaccination efficacy is enhanced by targeting the antigen-presenting cell compartment. Here, we show that S1-Fc antigen delivery targeting the Fc{gamma}R+ antigen-presenting cell compartment elicits anti-SARS-CoV-2 S1-antigen specific IgG production in vivo exerting biologically functional and protective activity against live virus infection, assessed in a stringent experimental virus challenge assay in vitro. The S1-domain of the SARS-CoV-2 spike protein was genetically fused to a human immunoglobulin Fc moiety, which contributes to mediate S1-Fc cellular internalization by Fc{gamma}R+ antigen-presenting cells. Immediately upon administration intramuscularly, our novel vaccine candidate recombinant rS1-Fc homes to lymph nodes in vivo where Fc{gamma}R+ antigen-presenting cells reside. Seroconversion is achieved as early as day 7, mounting considerably increased levels of anti-S1 IgGs in vivo. Interestingly, immunization at elevated doses with non-expiring S1-Fc encoding dsDNA favors the education of a desired antigen-specific adaptive T cell response. However, low-dose immunization, safeguarding patient safety, using recombinant rS1-Fc, elicits a considerably elevated protection amplitude against live SARS-CoV-2 infection. Our promising findings on rS1-Fc protein immunization prompted us to further develop an affordable and safe product for delivery to our communities in need for COVID-19 vaccinations.


Asunto(s)
COVID-19 , Infecciones Tumorales por Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA